Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1633, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395948

RESUMO

Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.


Assuntos
Melanoma , Microbiota , Humanos , 60645 , Microbiota/genética , Células Dendríticas
3.
EBioMedicine ; 99: 104917, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104504

RESUMO

BACKGROUND: Neuroblastoma is the most frequent extracranial solid tumour in children, accounting for ∼15% of deaths due to cancer in childhood. The most common clinical presentation are abdominal tumours. An altered gut microbiome composition has been linked to multiple cancer types, and reported in murine models of neuroblastoma. Whether children with neuroblastoma display alterations in gut microbiome composition remains unexplored. METHODS: We assessed gut microbiome composition by shotgun metagenomic profiling in an observational cross-sectional study on 288 individuals, consisting of patients with a diagnosis of neuroblastoma at disease onset (N = 63), healthy controls matching the patients on the main covariates of microbiome composition (N = 94), healthy siblings of the patients (N = 13), mothers of patients (N = 59), and mothers of the controls (N = 59). We examined taxonomic and functional microbiome composition and mother-infant strain transmission patterns. FINDINGS: Patients with neuroblastoma displayed alterations in gut microbiome composition characterised by reduced microbiome richness, decreased relative abundances of 18 species (including Phocaeicola dorei and Bifidobacterium bifidum), enriched protein fermentation and reduced carbohydrate fermentation potential. Using machine learning, we could successfully discriminate patients from controls (AUC = 82%). Healthy siblings did not display such alterations but resembled the healthy control group. No significant differences in maternal microbiome composition nor mother-to-offspring transmission were detected. INTERPRETATION: Patients with neuroblastoma display alterations in taxonomic and functional gut microbiome composition, which cannot be traced to differential maternal seeding. Follow-up research should include investigating potential causal links. FUNDING: Italian Ministry of Health Ricerca Corrente and Ricerca Finalizzata 5 per mille (to MPonzoni); Fondazione Italiana Neuroblastoma (to MPonzoni); European Research Council (ERC-StG project MetaPG-716575 and ERC-CoG microTOUCH-101045015 to NS); the European H2020 program ONCOBIOME-825410 project (to NS); the National Cancer Institute of the National Institutes of Health 1U01CA230551 (to NS); the Premio Internazionale Lombardia e Ricerca 2019 (to NS); the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 Grant 2017J3E2W2 (to NS); EMBO ALTF 593-2020 and Knowledge Generation Project from the Spanish Ministry of Science and Innovation (PID2022-139328OA-I00) (to MV-C).


Assuntos
Microbioma Gastrointestinal , Microbiota , Neuroblastoma , Lactente , Criança , Feminino , Humanos , Animais , Camundongos , Estudos Transversais , Metagenoma , Neuroblastoma/etiologia
4.
Cell Host Microbe ; 31(11): 1804-1819.e9, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883976

RESUMO

The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Prevotella , Feminino
5.
Nat Med ; 29(8): 2121-2132, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414899

RESUMO

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .


Assuntos
Transplante de Microbiota Fecal , Melanoma , Animais , Camundongos , Transplante de Microbiota Fecal/métodos , Inibidores de Checkpoint Imunológico , Fezes/microbiologia , Melanoma/terapia , Imunoterapia , Resultado do Tratamento
6.
Cell Rep ; 42(5): 112464, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37141097

RESUMO

Mouse models are key tools for investigating host-microbiome interactions. However, shotgun metagenomics can only profile a limited fraction of the mouse gut microbiome. Here, we employ a metagenomic profiling method, MetaPhlAn 4, which exploits a large catalog of metagenome-assembled genomes (including 22,718 metagenome-assembled genomes from mice) to improve the profiling of the mouse gut microbiome. We combine 622 samples from eight public datasets and an additional cohort of 97 mouse microbiomes, and we assess the potential of MetaPhlAn 4 to better identify diet-related changes in the host microbiome using a meta-analysis approach. We find multiple, strong, and reproducible diet-related microbial biomarkers, largely increasing those identifiable by other available methods relying only on reference information. The strongest drivers of the diet-induced changes are uncharacterized and previously undetected taxa, confirming the importance of adopting metagenomic methods integrating metagenomic assemblies for comprehensive profiling.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Metagenoma , Dieta , Metagenômica/métodos
7.
Nat Biotechnol ; 41(11): 1633-1644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36823356

RESUMO

Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Metagenoma/genética , Microbiota/genética , Metagenômica/métodos , Filogenia
8.
Nature ; 614(7946): 125-135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653448

RESUMO

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Assuntos
Bactérias , Transmissão de Doença Infecciosa , Microbioma Gastrointestinal , Ambiente Domiciliar , Microbiota , Boca , Feminino , Humanos , Lactente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Mães , Boca/microbiologia , Transmissão Vertical de Doenças Infecciosas , Características da Família , Envelhecimento , Fatores de Tempo , Viabilidade Microbiana
9.
Nat Med ; 28(9): 1913-1923, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36109637

RESUMO

Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered a promising treatment for other microbiome-related disorders, but a comprehensive understanding of microbial engraftment dynamics is lacking, which prevents informed applications of this therapeutic approach. Here, we performed an integrated shotgun metagenomic systematic meta-analysis of new and publicly available stool microbiomes collected from 226 triads of donors, pre-FMT recipients and post-FMT recipients across eight different disease types. By leveraging improved metagenomic strain-profiling to infer strain sharing, we found that recipients with higher donor strain engraftment were more likely to experience clinical success after FMT (P = 0.017) when evaluated across studies. Considering all cohorts, increased engraftment was noted in individuals receiving FMT from multiple routes (for example, both via capsules and colonoscopy during the same treatment) as well as in antibiotic-treated recipients with infectious diseases compared with antibiotic-naïve patients with noncommunicable diseases. Bacteroidetes and Actinobacteria species (including Bifidobacteria) displayed higher engraftment than Firmicutes except for six under-characterized Firmicutes species. Cross-dataset machine learning predicted the presence or absence of species in the post-FMT recipient at 0.77 average AUROC in leave-one-dataset-out evaluation, and highlighted the relevance of microbial abundance, prevalence and taxonomy to infer post-FMT species presence. By exploring the dynamics of microbiome engraftment after FMT and their association with clinical variables, our study uncovered species-specific engraftment patterns and presented machine learning models able to predict donors that might optimize post-FMT specific microbiome characteristics for disease-targeted FMT protocols.


Assuntos
Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Antibacterianos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Humanos , Resultado do Tratamento
10.
Genome Biol ; 22(1): 209, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261503

RESUMO

BACKGROUND: Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. RESULTS: We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. CONCLUSIONS: We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.


Assuntos
Microbioma Gastrointestinal/genética , Genoma Bacteriano , Metagenoma , Filogenia , Akkermansia/classificação , Akkermansia/genética , Akkermansia/metabolismo , Akkermansia/virologia , Animais , Bacteriófagos/crescimento & desenvolvimento , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Variação Genética , Humanos , Camundongos , Óperon , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...